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Some Aspects of the Measurement of the

Q F&tor of Transmission Lines”

P. I. SOMLO~

Summary—This

measurement of the

paper deals with two basic problems in the

Q factor of low-loss transmission lines: 1) long

lines and 2) short lines with appreciable direct coupling between the

driving and pickup probes.

The results are given as relative ordinates on the (distorted)

resonance curve which correspond to the correct values off ;L?l or

~ @j defined by Q =j/8j= 1/81.

I. INTRODUCTION

A

TRANSMISSION LINE can be described by its

characteristic impedance ZO (ohms) and its prop-

agation constant -y = a +j~, where a (nepers/m)

is the attenuation constant and (? (radians/m) is the

phase-change constant.

This paper is concerned with the measurement of the

Q factor of a transmission line which is defined generally

by

2~(Energy stored)
Q=

Energy lost per cycle

and is related to the components of the propagation con-

stant by the simple, exact and approximate expressions

given later. As it is often possible to determine the Q

factor accurately by a simple resonance technique, the

measurement of Q, together with some easily obtainable

additional information, provides a convenient alterna-

tive method of determining the attenuation constant

while avoiding difficulties of matching to the line im-

pedance.

In the case of “short” uniform transmission lines it is

standard practice to measure the above defined Q factor

by alternative methods. 1–3 One of these is the “line

length variation method” in which the line is terminated

in short or open circuits, and then Q = 1/61 where l(m)

is the length of the transmission line at resonance and

~N(tn) is the length which is a necessary variation on 1

* Received January 7, 1963; revised manuscript received June 17,
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Sect. 5.1, pp. 5-l-5-4; 1954.

to reduce the maximum value of the current (or the

voltage) at the termination to its 1/<2 value.4

As far as driving and pickup are concerned there are

two practical possibilities. The driving and pickup

probes can be at the same, or at opposite ends.

It is obvious from a simple qualitative reasoning that

the expression of Q = 1/81 will be increasingly in error

as the transmission line is made longer. When the pickup

and feeding probes are at the same end, and the line is

made very long, the input impedance approaches the

characteristic impedance of the line, and a change in

line length will produce hardly any change at the in-

put. Consequently, resonance cannot be detected. From

this it is clear that as the length of the line is gradually

increased, the resonance curve detected at the input will

undergo a distortion until it finally becomes almost a

constant.

If the driving and pickup probes are on opposite ends

of the line, it is clear that on increasing the length of

the line the change at the pickup probe will be approxi-

mately exponential. The ‘f familiar” resonance curve will

suffer a progressive distortion into an exponential curve.

The first part of this paper deals with the corrections

needed to determine the accurate value of the Q factor

of the transmission line irrespective of its length.

The second part deals with a special case of the first.

It has been found on several occasions while carrying

out Q-factor measurements on transmission lines that

when both the driving and pickup loops were placed

at the same end of the line, there was a noticeable dis-

tortion in the shape of the resonance curve, as shown in

Fig. 1.

ILI

I

Fig. l—Shape of resonance curve with fixed
coupling between input and output.

4 R. A. Chipman, “.4 resonance curve method for the absolute
measurements of impedance at frequencies of the order 300 iMc/sec-
end, ” J. Appl. Phys.. vol. 10, pp. 27–38; January, 1939.
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This distortion is caused by the presence of a fixed

coupling between the driving and pickup probes.

As it is sometimes very difficult to remove this un-

wanted coupling, particularly in small diameter coaxial

lines, methods of finding the true Q factor from the

distorted resonance curve are given below.

II. THEORY

A. Measurevzent of the Q factor of Long Transmission

Lines by the Resonance Method

In

1)

2)

3)

4)

In

the following it will be assumed that:

the sending end may be regarded as a zero-im-

pedance voltage source,

the line is terminated in ideal loss-free short cir-

cuits,

there is no fixed coupling between input and out-

put,

the input and output coupling has been reduced to

such a low value that further reduction has no

noticeable effect on the resonance curve.

addition, the approximations are made that

resonance occurs when ’61 = n~ (see Appendix-A) and

that Q = @/2a (see Appendix-B).

1) Case a: Input and output at the same end.

Let us consider a transmission line with ideal short

circuits at both ends. (See Fig. 2, using “In” and “Out 1“

only.)

For that line

VI
— = Zin = Z“ tanh Yl

where

il

tanh yl =
sinh 2rYl + j sin 2~1

cosh 2a1 + COS 2fi1

Since the detector is sensitive to the absolute value

of current flowing in the short circuit

\vl\ Iv,l cosh 2a1 + COS 2@
— .

I “I = I z,~l = I Z, I ~(sinh~ 2ad + sin’ ~@)
. (1)
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M~ith this value of 1, (1) becomes

IV,] cosh2x+l

1 ~11.. = ‘“
I Z, ] sinh 2X

(2)

where x = nm/fi = cd, which is the total attenuation of

the line, in nepers.

Our aim here is to find the values of currents ] ill w

which correspond to the changed lengths of the resonat-

ing line lQk = 1. + (1,/2)81 which by definition yield the

value of Q in the relation Q = 1,/81.

It can be shown that this current is

]~,]Q+= IV’]
cosh 2y + COS ‘2x

‘, I ZO I ~(sinh’2y + sin’ ‘2x)
(3)

where y = x [(1 t l,f(2Q) ], by the use of the relation

Q= fl/(2a).

It is convenient in practice to normalize these cur-

rents to the maximum current so that we obtain

] i,\Q+ (cosh 2y + cos 2t) sinh 2.x
_—

] i~ l..~ - [V(sinh’2Y + sin’ 2x)](1 + cosh 2x) “ ‘4)

———

In Fig. 3, I ill Q+/ I iIl ~.. has been plotted against

x (nepers) or, more conveniently, against (20/in 10) (db)

and (n/Q) 10Z for different values of Q.

Case b: Input

(The network

2“ only.)

The defining

parameters of a

and output at opposite ends.

is shown in Fig. 2, using “In” and “Out

equations of the asymmetrical linear

transmission line are

il = ais + bVz (5)

V1 = ciz + aV2 (6)

where a = cosh 71, b = (l/Zo) sinh 71, c = Z’O sinh 71.

Because the termination is a perfect short circuit,

V,=o.

v,
— = Zin = ZO tanh 71. (7)
il

From (5) and (7)

i~ = V1/(ZO sinh ~1)

—— V~/[ZO(sinh al. cos /31 + j cosh al sin /31)]

At resonance (when I i,l k maximum) 1=1, = 71~/@ and

where n=l,2,3, . . . .

]~2\ = IV’l
1

out 1 out 2 ) Zo ! ti(sinh’ al cos’ i31 + cosh’ a~sin’,@ “ ‘8)

k 1

At resonance when 1z 1, = n/ir~ after similar steps as be-

fore in obtaining (2), [ i~l ~,~ = [ VI]/\ ZO I sinh X. TheZO, Y

[L , J

absolute value of the current which corresponds to lQ+

is from (8),

In

Fig. 2—Resonant transmission line. Case a, coupling at the same end
,i2,Q,=!!!!-

(“Out 1”) and Case b, coupling at opposite ends ‘(Out 2”. ] Z, I <(sinh’ y. COS2X1+ cosh’:; sin’ X) “ ‘9)
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Fig. 3—Total loss in line vs normalized ordinates on the resonance curve which correspond to T ~AZ. For Case a and again for Case b in
each pair of curves at a given Q, the upper correspond to — +AJ and the lower to +~A1.

Normalizing as before with respect to the maximum

current,

\ i21Q+ sinh z

,i,, -=
max ~(sinh’ y COS2x + cosh’ y sin’ x)

(See Fig. 3.) (10)

a) Evaluation of results: The plotted results indicate

that, when measuring the Q factor of a uniform trans-

mission line by the “length variation method,’7 the

familiar concept of detuning until the ordinate on the

resonance curve drops by 3.01 db relative to its local

maximum is only an approximation. For any given value

of total loss in the line the charts give the ordinate cor-

responding to the value of ~al needed to calculate Q.

In practice, of course, neither the total loss in the line

nor the value of the Q factor is known, in fact, that is to

be determined. So the procedure is to detune the line

to produce a 3 db-drop, giving an approximate value

of the Q factor. This value is used to find a new ordinate

(instead of 3 db) which will give a new value of 61, and

Q factor. This successive approximation has to be

carried out until the change in the Q values is less than

the resolution of the measurement. Since the correction

is small for practical values of attenuation, the con-

vergence is fast, and two to three steps are adequate in

most cases.

Furthermore, Fig. 3 confirms the well-known fact

that the measured resonance curve is not symmetrical

about its maximum, because, by varying the length of

the line, the total attenuation is varied also and an ex-

ponential change is superimposed on the resonance

curve. Fig. 3 has been plotted for up to 4 db-total loss.

For larger amounts of total loss it becomes more prac-

tical to carry out a direct attenuation measurement for

several reasons (broadening of resonance curve, match-

ing less critical, etc.).

However, it is interesting to note that the curve

representing Case a (probes at the same end) reaches a

minimum at about 6 db-total loss and starts to rise

again. The reason is that 61 becomes so large that

1T ~dl takes a value on the next, neighboring res-

onance curve.

b) Measurement of the Q facto~ by frequency va~iation:

It is shown in Appendix-C that, by assuming that ~

varies linearly with frequency, the results of calcula-

tions based on the ‘(line length variation method” are

precisely duplicated.

In the case of non-TEM ~modes (e.g. waveguides), the

variation of ~ vs f is not linear, but having sufficiently

high Q values in the relatively small band of df, the

change of B can be approximated by a linear function.

It is to be remembered that in waveguides where the

total attenuation is small Q = f/8f == (1/61) (Ag/A) 2 where

A, is the guide wavelength.6

6 E. L. Ginzton, “NIeasurement of Attenuation, ” “iVIicrowave
Measurements, ” NIcGra\v-Hill Book Company, Inc., New York,
N. Y., ch. 11.4; 1957.
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B. Measurement of the Q Factor in the Presence of Cou-

pling Between the [nput and (lL{tput P~obe~

In this section it is assumed (as in Section II-A, ~s-

sumption 4) that the inpllt and output coupling is

adjusted to be loose enough so that there is no sig-

nificant external loading of the resonating line.

It has been shown in the literature that the input

impedance of a short-circuited lossy line plotted on the

complex impedance plane traces a spiral if the length of

the line is varied. The rate of the contraction of the

spiral is a function of the losses present in the line. It

can be shoIrn that this rate, or proportional change in

diameter after one full revolution (X/2), is approxi-

mately rzl’ (8QZ). Thus if Q >100 one revolution on the

spiral can be taken as being a circle, and this approxi-

mation will be close enough for present purposes.

Considering the line short-circuited at both ends with

the two inductive probes positioned close to one of the

short circuits with coupling between the probes, and

coupling between the probes and the line, the following

is the lumped circuit equivalent (see Fig. 4).

It can be shown

components,

iz = iz’ +

that the current i~ consists of two

Q of Transmission Lines
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Fig, 4—Lun]ped circuit equivalent of resonant transmission line with
fixed couplin~ between input and output.

voltage generator, the locus of the current flowing in

the short circuit (and in the pickup loop) is a circle on

the complex plane as the line length is varied, and re-

membering the phase relationship between the two com-

ponents of the current in the pickup loop, i! can be

represented as in Fig. 5.

f jwM-
i!” = irJI + ‘––

—L#liflt

R~ +jtiL

( ;) [ ( 1 )1--)”’11)RTRI – UL UL1 – — +j RLwL + RT uL1 – ~
[

One of these components is not affected by tuning of the Treating the problem as a purely geometrical one,

circuit, being a constant determined by the mutual

coupling (,11) between the probes. As will be shown, the

other component will change phase with respect to the

first component from o to ~ as the LICIRI circuit is

tuned. 11’hen the LIC1l<I circuit is at resonance these

two components will be in phase quadrature. ‘1’hen

ULI = I/(u Cl) so that

W2ML + jwMR ~,
ix’ = i.

R,’ + ti2L -

and

The tangents of the phase angles of i,’ and z,”, respec-

tively, are tan L tz’ = RT/(wL) ; tan L iz” = –uL/1<7..

Since these two quantities are negative reciprocals of

each other, the currents iz’ and i~” are in phase quadra-

ture when the LICIR1 circuit is at resonauce.

By remembering that for the short-circuited loss}-

transmission line driven by a zero-impedance constant

‘J. C. Slater, “Transmission lines, ” in “hIicrowave Trans-
mission, ” McGraw-Hill Book Company, Inc., New l“ork, N, Y., ch,
1, pp. 33-37; 1942.

the absolute value of i~ can be expressed as

] iz[ = <[L” i 2L’<(-S2 + 2s) t 7s]

if the system is normalized so that the radius of the

circle is unity.

To find the apparent peak of the “resonance” curve

Substituting this value of s (with the positive sign) into

I i,] we get

i“= /{((i;’+1)[1+24~(;;z)l+’}
(12)

Remembering that the aim is to measure the Q factor

of the resonating transmission line the question is:

what values will ] izl take when the line i:; detuned (by

the shift of the position of the short circuit at the far

end) so that ] ~z” ] drops to \ i~” ] ,naX/<~. For brevity

let these values of ] izl be called ] izl ~. From the geom-

etry

I &lQ = d(i:’ i 2i,’ + 2). (13)
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Fig. 5—Vector diagram of currents in a resonant transmission line
with fixed coupliug between input and output.

During the measurement the only reference level is

the maximum of / ;21 (the peak of the distorted reso-

nance curve), so it is necessary to relate I & I ~ to that

maximum.

(14)

On the other hand, to find the magnitude of ii the line

has to be tuned far off resonance (see Fig. 1). Again,

this value must be related to the apparent maximum.

Therefore,

(15)

In Fig. 6 li’]~/\i2]~%x has been plotted against

[&’[/lL]max. This chart is used in the following way.

Detune the line sufficiently to find the value of the

asymptote and relate this value to the apparent maxi-

mum. Take the corresponding values of [ izl ~/ I i,[ ~~~

from the chart, noting that the smaller ratios apply to

the steeper side of the resonance curve. Detune the line

until the readings drop to the two given fractions of the

maximum. These are the positions of the sliding short

circuit that will give the correct value of the Q factor

in the formula Q = 1/81 where 61 is the distance between

the two positions of the short circuit and 1 is the full

Fig. 6—Normalized value of the asymptote of the distorted resonance
curve (see Fig. 1) vs normalized ordinates on the resonance curve
which correspond to + ~AJ in the case of fixed coupling between the
input and output loops.

length of the line. The position of the short circuit which

corresponds to the line at resonance will be the mean of

the two positions used in the Q-factor measurement.

III. CONCLUSIONS

Two aspects of Q-factor measurements of transmis-

sion lines have been discussed which lead to corrections

to be applied to the familiar method of the “3 db-drop. ”

It has been shown that corrections are necessary in the

measurement of the Q factor of a ~~long” transmission

line having appreciable loss between its terminating

short circuits. It has been shown also that accurate Q

measurements may be made in the presence of fixed

coupling between the driving and pickup probes.

The corrections to be used are given as relative ampli-

tudes normalized to the maximum of the ‘[resonance”

curve, which correspond to the true values of f ~N or

f ~8~ in the Q-factor formula Q =~/~~ or Q = l/&l.

APPENDIX

A. Definition of Resonance

In the case of a transmission line short-circuited at

both ends with both the driving and pickup probes at

the same end, resonated by variation of the line length,

the maximum current in the pickup probe will occur

when the absolute value of the input impedance reaches

a minimum. For that line

Izinl = IZOI
~(sinh’2al + sin’2@

cosh 2a1 + COS 2@
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let

@ = ?L(7r + l?)

where n is the integral number of half wavelengths in

the line and d is a small quantity to be evaluated. In

that case 2@ = 2n(n- + ~) and hl = 2cwz(~ + 8)/(3

=n(7r+8)/Q.
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Taking such a case as the extreme and specifying the Q,

or QP >100 (while QD or Q, = ~, respectively)

1P
—— — 1<0.000025.
Q 2CY

This shows that the approximation ~j (2a) = Q is suffi-

ciently accurate.

d[J 91T ?16 n r

1
?L; 2

sinh — cosh — + cosh — sinh —
IQQQQ

+ [sin 2?27rcos 2?26 + cos 2n7r sin 2ml]’

lZ,nl = lZOl —
1

.——
Jbir ?26 ‘lbT nti

cosh — cosh — + sinh — sinh — + cos 2n7r cos 2uI.3 — sin 2WT sin 2128

QQ QQ

(see Appendix-B)

assuming that 8<<1 and n/Q<<l and taking only the C. Measurement of the Q Factor by F~equzncy Variation

first-order terms into account
It will be shown that by assuming that P varies

]2,. ] =

from which 6 = –

d( )
linearly with frequency (~ =-2~f/v) for’1 i! ~/ I il ~.x pre-

Zol : 4~2+2~+< ,

Q’ Q’
ciskly the same relationship applies as established for

the “line length variation method” irrespective of the
~hentllZ,,,l =0=86+~ form of variation of a with frequency.

d6 Q’ The relationships to be used are

/ (4 Q’) and therefore p = 27rf/v; h = v/(2fo) = x/2; 1 = IZ1O; a = k(f)

1
@ = ?2(7r + 6) ()=Wrl-—. ~Q2

As this paper deals with transmission lines having Q

factors of the order of hundreds or higher, the state-

ment that at resonance ~1 = nr is justified.

It can be shown that the result obtained here is in

agreement with that obtained when the two probes are

situated at opposite ends of the line.

B. A ccuvacy of ~/(2a) = Q fo~ tke Gene~al T~ansnzission

Line

Defining Q,= uL/R and Q, =ti C/G it can be shown

that the over-all Q factor of the line will be

Q = QsQ,

QA-Q,”

On the other hand, using the definition of y = a+jp

= v’ [(R+j~L) (G+.joC) ] it can be shown, by a calcula-

tion too lengthy for inclusion in this paper, that

b QsQ,

[

(Q. – Q,)’ 1(Q.’ – QP2)2+ . . . .
—

Ta = Q.+ Q. 1 + 4Q,2QP’ (4Q,2QP2)’

The series in the brackets indicates that @/(2a) does not

give the precise value of the over-all Q factor except in

the special case when Q.= Q2 (distortiomless line). The

largest divergence occurs if there is only one kind of loss

when the series takes the form

1
l+A– —+

~Q2
~6Q4 .-. .

When the input and output probes are

end, it was shown that

Ijll =Iv’l cos 2~10n + cosh 2alon

I Zu \ <(sin’2@on+cosh’2cJ01J)

at the same

]Vll
2102Tf

Cos — n + cosh 210nk(~)
v

—— —.

‘12.1/[ v
sinz ‘z n + sinhz 21wzk(f) 1

The value of I i,] if f =f~ is

since

Cos[%-f+ %J=cOs:;i=cOs;
= Cos 2x
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and which is the same function as was obtained from the

‘in[+f’(%i)l=‘sin;=‘sin’”’
“line length variation method. ” Similarly, it can be

shown that when the two probes are at opposite ends

the result is identical, irrespective of whether the line

length or the frequency has been changed to obtain the
and

value of the Q factor.

2TIO n

=6’’(’’+)=%’+)=2’

The reason for this is that I i I ~/ I il ~=x =j”(x) where
2@(fQ) = ~ = nm/ (2Q) (nepers) which means that the correction

IV, I COS2X + cosh 2y

to be used in the Q-factor measurement is a function of

l’~1 ‘—
the total attenuation only, and therefore the same result

I 20 I ~(sin’2X+sinh’2y)
will be obtained by either method of measurement.

A Nonuniform Coaxial Line with an Isoperimetric

Sheath Deformation*

N. SESHAGIRI~

Summary—For impedance matching in transmission lines, non-

uniform lines, obeying laws of taper like the exponential, the Dolph-

Chebyshev etc., are used. For the nonuniform coaxial line, construc-

tional advantages can be derived for the same electrical performance

if it has a uniform circular inner conductor with an outer conductor

having an isoperimetric transition, from circular to elliptic cross

section, in conformity with the established laws of taper. This prob-

lem has been examined in the paper, and the required design for-

mulas as well as the design charts are developed. The effect of an

impedance and geometric discontinuity at the low-impedance junc-

tion of such a nonuniform line and the concentric circular uniform

line is discussed. The use of the isoperimetric transition line in

microwave components is indicated.

I. INTRODUCTION

A CONIMON PROBLEl\I of systems design is im-

pedance matching. In coaxial transmission lines,

this presents difficulties associated with electri-

cal and mechanical design considerations. A solution to

the mechanical aspect of the problem has been attempted

by the use of nonuniform transmission lines, with a

variation of the diameter of either the inner or the outer

conductor satisf~-ing the electrical requirements. The

latter approach is suggestive of an alternative method

wherein the outer conductor transforms isoperimetri-

cally from a circular cross section to an elliptic cross

section, the inner conductor being uniformly circular.

Mechanical advantages can be derived for the same elec-

trical performance if the increase of ellipticity is related

to the existing laws of transitic,n. The proposed structure

* Received March 11, 1963; revised manuscript received July 23,
1963.

t Department of Electrical Communication Engineering, Indian
Institute of Science, Bangalore, India.

permits easy and continuous installation of any law of

taper. Thus, for instance, the difficulty encountered to

install the exponential lawl or the Orlov’s law2 of taper

is not appreciably more than that for a linear taper. The

design can also be used for tapered terminations at

microwaves,3 and in the design of microwave com-

ponents where work on the use of nonuniform lines has

been reported.~’5

To develop the required design formulas it is first

necessary to carry out the field analysis of infinitely

long uniform lines with a circular cylindrical inner con-

ductor surrounded by an elliptic outer conductor. Morse

and Feshbachb give an expression for the case of an inner

conductor in the form of a thin wire. A similar analysis

can also be made using a Schwarz’s transformation.7

The requirement of the design considered in this paper

being that of an inner conductor whose radius is com-

parable to the dimensions of the ellipse, a different

‘ C. R. Burrows, “The exponential transmission line, ” Bell ,Sy~.
Tech. J., vol. 17, pp. 555–573; October, 1938.

2 S. 1. Orlov, “Concerning the theory of non-uniform transmission
lines, ” J. Tech. Phys. USSR, vol. 26, pp. 2361–2372; October, 1956.
(Translated by APS, vol. 1, pp. 2284-2294; October, 1957.)

3 G. T. Clemens, “A tapered line termination at microwaves, ”
Quart. J. Appl. Math., vol. 7, pp. 425-432; January, 1950.

4 C. P. Womack, “The use of exponential transmission lines in
microwave components, ” IRE TRANS. oiw MICROWAVE THEORY AND
TECHNIQUES, vol. 1MTT-10, pp. 124–132; March, 1962.

5 R. N. Ghose, ‘(Exponential transmission lines as resonators and
transformers, ” IRE TRAM. ON MICROWAVE THEORY AND TECH-
NIQUES, VO1. MTT-5, pp. 213–217; July, 1957.

c P. M. Morse and H. Feshbach, “Methods of Theoretical Ph ys-
ics, ” McGraw-Hill Book C?., Inc., New York, N. Y., p. 1203; 1953.

7 H. A. Schwarz, “Notlzla sulla rappresentazione conforme di
un ‘area ellittica sopra un’area circolare, ” A nnazi di Matematica (11),
VO1. 3, pp. 166–173; 1869.


