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Some Aspects of the Measurement of the
Q Factor of Transmission Lines*

P. I. SOMLO?

Summary—This paper deals with two basic problems in the
measurement of the Q factor of low-loss transmission lines: 1) long
lines and 2) short lines with appreciable direct coupling between the
driving and pickup probes.

The results are given as relative ordinates on the (distorted)
resonance curve which correspond to the correct values of 48l or
+35f defined by Q=f/of=1/sl.

I. INTRODUCTION
ﬁ TRANSMISSION LINE can be described by its

characteristic impedance Z, (ohms) and its prop-

agation constant y=a-+jB, where o (nepers/m)

is the attenuation constant and 8 (radians/m) is the
phase-change constant.

This paper is concerned with the measurement of the

Q factor of a transmission line which is defined generally

by
27 (Energy stored)

B Energy lost per cycle

and is related to the components of the propagation con-
stant by the simple, exact and approximate expressions
given later. As it is often possible to determine the Q
factor accurately by a simple resonance technique, the
measurement of @, together with some easily obtainable
additional information, provides a convenient alterna-
tive method of determining the attenuation constant
while avoiding difficulties of matching to the line im-
pedance.

In the case of “short” uniform transmission lines it is
standard practice to measure the above defined Q factor
by alternative methods.’~% One of these is the “line
length variation method” in which the line is terminated
in short or open circuits, and then Q=1/8] where I(m)
is the length of the transmission line at resonance and
161(m) is the length which is a necessary variation on /
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to reduce the maximum value of the current (or the
voltage) at the termination to its 1/+/2 value.

As far as driving and pickup are concerned there are
two practical possibilities. The driving and pickup
probes can be at the same, or at opposite ends.

It is obvious from a simple qualitative reasoning that
the expression of Q=1/6/ will be increasingly in error
as the transmission line is made longer. When the pickup
and feeding probes are at the same end, and the line is
made very long, the input impedance approaches the
characteristic impedance of the line, and a change in
line length will produce hardly any change at the in-
put. Consequently, resonance cannot be detected. From
this it is clear that as the length of the line is gradually
increased, the resonance curve detected at the input will
undergo a distortion until it finally becomes almost a
constant.

If the driving and pickup probes are on opposite ends
of the line, it is clear that on increasing the length of
the line the change at the pickup probe will be approxi-
mately exponential. The “familiar” resonance curve will
suffer a progressive distortion into an exponential curve.

The first part of this paper deals with the corrections
needed to determine the accurate value of the Q factor
of the transmission line irrespective of its length.

The second part deals with a special case of the first.
It has been found on several occasions while carrying
out Q-factor measurements on transmission lines that
when both the driving and pickup loops were placed
at the same end of the line, there was a noticeable dis-

tortion in the shape of the resonance curve, as shown in
Fig. 1.

ful

Fig. 1—Shape of resonance curve with fixed
coupling between input and output.

*R. A. Chipman, “A resonance curve method for the absolute
measurements of impedance at frequencies of the order 300 Mc/sec-
ond,” J. Appl. Phys.. vol. 10, pp. 27-38; January, 1939.
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This distortion is caused by the presence of a fixed
coupling between the driving and pickup probes.

As it is sometimes very difficult to remove this un-
wanted coupling, particularly in small diameter coaxial
lines, methods of finding the true Q factor from the
distorted resonance curve are given below.

II. THEORY

A. Measurement of the Q factor of Long Transmission
Lines by the Resonance Method
In the following it will be assumed that:

1) the sending end may be regarded as a zero-im-
pedance voltage source,

2) the line is terminated in ideal loss-free short cir-
cuits,

3) there is no fixed coupling between input and out-
put,

4) the input and output coupling has been reduced to
such a low wvalue that further reduction has no
noticeable effect on the resonance curve.

In addition, the approximations are made that
resonance occurs when Bl=nr (see Appendix-A) and
that Q=3/2a (see Appendix-B).

1) Case a: Input and output at the same end.

Let us consider a transmission line with ideal short
circuits at both ends. (See Fig. 2, using “In” and “Out 17
only.)

For that line

Vi
— = Zin = Zy tanh v!
11
where
sinh 2al -+ 7 sin 23/
tanh vl = &

cosh 2al + cos 281 .

Since the detector is sensitive to the absolute value
of current flowing in the short circuit

| Vil | Vi]  cosh 2al + cos 261
| Zw| | Zs| +/(sinh?2al + sin? 28])

1

i) =

At resonance (when |11] is maximum) /=/[=nw/B
where n=1,2,3, - .

Out 1 Out 2

S —
> ’ |
| , -

Fig. 2—Resonant transmission line. Case a, coupling at the same end
(“Out 17) and Case b, coupling at opposite ends “Out 27,
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With this value of /, (1) becomes
| V1| cosh2x+ 1
| Zo ]

| 1 fmax = @)

sinh 2z

where ¥ =nwa/B=al. which is the total attenuation of
the line, in nepers.

Qur aim here is to find the values of currents [1}] o+
which correspond to the changed lengths of the resonat-
ing line lg4=1,+(1/2)6! which by definition yield the
value of Q in the relation Q=1,/4..

It can be shown that this current is

| VJ cosh 2y -+ cos 2x
l Zoi +/(sinh? 2y + sin? 2x)

3)

| it |os =
where y=x[(1+1/(20)], by the use of the relation
Q=8/Qa).

It is convenient in practice to normalize these cur-
rents to the maximum current so that we obtain

(cosh 2y + cos 2x) sinh 2x

= R - G
[/ (sinh? 2y + sin? 22) | (1 + cosh 2x)

| i1 ox

| is

max

In Fig. 3, | i1| o0+/| i1 max has been plotted against
x (nepers) or, more conveniently, against (20//% 10) (db)
and (#/Q)-10? for different values of Q.

Case b: Input and output at opposite ends.

(The network is shown in Fig. 2, using “In” and “Out
2” only.)

The defining equations of the asymmetrical linear
parameters of a transmission line are

il = (lig + bV2 (5)
V1 = Ciz + de (6)
where a=cosh vI, b= (1/Z,) sinh I, ¢ =Z, sinh #l.

Because the termination is a perfect short circuit,
Vy=0.

Vi
— = Zin = Zotanhvyl. (N

31
From (5) and (7)
19 = Vi/(Zosinh vl)
= Vy/[Zo(sinh al-cos B + j cosh al sin B7)]
and
! Vll 1 '
| Zy| +/(sinh? &l cos? I + cosh? al sin? 1)

(8

lis] =

At resonance when [ =/,=n/7f after similar steps as be-
fore in obtaining (2), || mex=1|V1|/|Zs| sinh x. The
absolute value of the current which corresponds to lg+
is from (8),

| 7, 1

| Zo| +/(sinh?y-cos? x + cosh? y-sin? x)

13

©)

| iz lor =
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Fig. 3—Total loss in line vs normalized ordinates on the resonance curve which correspond to F3Al For Case a and again for Case b in
each pair of curves at a given Q, the upper correspond to — %Al and the Jower to +3AL

Normalizing as before with respect to the maximum
current,

} 19 }Qi— sinh «
| 13 Imax 4/ (sinh? y cos? -+ cosh? y sin? &)

(See Fig. 3.)

(10)

a) Ewaluation of results: The plotted results indicate
that, when measuring the Q factor of a uniform trans-
mission line by the “length variation method,” the
familiar concept of detuning until the ordinate on the
resonance curve drops by 3.01 db relative to its locatl
maximum is only an approximation. For any given value
of total loss in the line the charts give the ordinate cor-
responding to the value of £/ needed to calculate Q.

In practice, of course, neither the total loss in the line
nor the value of the Q factor is known, in fact, that is to
be determined. So the procedure is to detune the line
to produce a 3 db-drop, giving an approximate value
of the Q factor. This value is used to find a new ordinate
(instead of 3 db) which will give a new value of 8/, and
Q factor. This successive approximation has to be
carried out until the change in the Q values is less than
the resolution of the measurement. Since the correction
is small for practical values of attenuation, the con-
vergence is fast, and two to three steps are adequate in
most cases.

Furthermore, Fig. 3 confirms the well-known fact
that the measured resonance curve is not symmetrical
about its maximum, because, by varying the length of

the line, the total attenuation is varied also and an ex-
ponential change is superimposed on the resonance
curve. Fig. 3 has been plotted for up to 4 db-total loss.
For larger amounts of total loss it becomes more prac-
tical to carry out a direct attenuation measurenent for
several reasons (broadening of resonance curve, match-
ing less critical, etc.).

However, it is interesting to note that the curve
representing Case a (probes at the same end) reaches a
minimum at about 6 db-total loss and starts to rise
again. The reason is that 8/ becomes so large that
[ T16] takes a value on the next, neighbouring res-
onance curve.

b) Measurement of the Q factor by frequency variation:
It is shown in Appendix-C that, by assuming that 8
varies linearly with frequency, the results of calcula-
tions based on the “line length variation method” are
precisely duplicated.

In the case of non-TEM modes (e.g. waveguides), the
variation of 3 vs f is not linear, but having sufficiently
high @ values in the relatively small band of §f, the
change of 8 can be approximated by a linear function.
It is to be remembered that in waveguides where the
total attenuation is small Q=f/8f= (I/8])(\,/N\)? where
A\, is the guide wavelength.5

5 E. L. Ginzton, “Measurement of Attenuation,” “Microwave
Measurements,” McGraw-Hill Book Company, Inc., New York,
N. Y, ch. 11.4; 1957,
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B. Measurement of the Q Factor in the Presence of Cou-
pling Between the Input and Output Probes

In this section it is assumed (as in Section II-A, as-
sumption 4) that the input and output coupling is
adjusted to be loose enough so that there is no sig-
nificant external loading of the resonating line.

It has been shown in the literature® that the input
impedance of a short-circuited lossy line plotted on the
complex impedance plane traces a spiral if the length of
the line is varied. The rate of the contraction of the
spiral is a function of the losses present in the line. Tt
can be shown that this rate, or proportional change in
diameter after one full revolution (N\/2), is approxi-
mately 72/ (8Q?). Thus if 0> 100 one revolution on the
spiral can be taken as being a circle, and this approxi-
mation will be close enough for present purposes.

Considering the line short-circuited at both ends with
the two inductive probes positioned close to one of the
short circuits with coupling between the probes, and
coupling between the probes and the line, the following
is the lumped circuit equivalent (see Fig. 4).

It can be shown that the current 7, consists of two
components.

[ jeM
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Fig. 4—Lumped circuit equivalent of resonant transmission line with
fixed coupling hetween input and output.

voltage generator, the locus of the current flowing in
the short circuit (and in the pickup loop) is a circle on
the complex plane as the line length is varied, and re-
membering the phase relationship between the two com-
ponents of the current in the pickup loop, 42 can be
represented as in Fig. 5.

i2 = iﬂl + 7:2// = io\—v-.—~
Ry 4+ jwL
\

One of these components is not affected by tuning of the
circuit, being a constant determined by the mutual
coupling (A/) between the probes. As will be shown, the
other component will change phase with respect to the
first component from 0 to m as the LiCiR, circuit is
tuned. When the L,C1R, circuit is at resonance these
two components will be in phase quadrature. Then
wli=1/(wC;) so that

WML+ juMRy
iy = 4g——— —
" Re o+ oL

and

RrR; — joR:L
R2R % + R2°L°

7 .
19 = - ’Zuw2M12

The taugents of the phase angles of 45’ and 1/, respec-
tively, are tan Z1/=Rr/(wl); tan /i)' = —wL/Ry.
Since these two quantities are negative reciprocals of
each other, the currents 7y’ and .’ are in phase quadra-
ture when the LC1Ry circuit is at resonance.

By remembering that for the short-circuited lossy
transmission line driven by a zero-impedance constant

8J. C. Slater, “Transmission lines,” in “Microwave Trans-
mission,” McGraw-Hill Book Company, Inc., New York, N. Y., ch.
1, pp. 33-37; 1942,

1
RrR, — oL (le — ~Ej> +7 {RML + Rr <wL1

— WMy 1 )
)

Treating the problem as a purely geometrical one,
the absolute value of 7. can be expressed as

= /[id? + 2iy/(—s2 + 25) + 2s]

if the system is normalized so that the radius of the
circle is unity.
To find the apparent peak of the “resonance” curve

(11)

w1

12

0“2] =0 and s=1+

V 1
Js B '+ 1

Substituting this value of s (with the positive sign) into
is| we get

wom g/ (w0 [142y/ () ]+ -

(12)

| i

Remembering that the aim is to measure the Q factor
of the resonating transmission line the question is:
what values will | i;| take when the line is detuned (by
the shift of the position of the short circuit at the far
end) so that |4)’| drops to nax/ V2. For brevity
let these values of lig be called l“l ¢- From the geom-
etry

Lg”

@ = (i £ 24 + 2). (13)

|y
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vl

Fig. 5—Vector diagram of currents in a resonant transmission line
with fixed coupling between input and output.

During the measurement the only reference level is
the maximum of Mg' (the peak of the distorted reso-
nance curve), so it is necessary to relate [igl ¢ to that
maximum.

[i2]e i & 24y + 2

s e 1/{((wﬂL 1)[1+24/<¢;—214;"1>] N 1} |

(14)

On the other hand, to find the magnitude of 45’ the line
has to be tuned far off resonance (see Fig. 1). Again,
this value must be related to the apparent maximum.
Therefore,

la' | _ & |

| 42 |max 4/{(@/2 + 1) [1 +2 4/(;11’1)} i 2}.

(15)

In Fig. 6 I'Lz] Q/[ ig]max has been plotted against
|42’ | /| 42| max. This chart is used in the following way.
Detune the line sufficiently to find the value of the
asymptote and relate this value to the apparent maxi-
mum. Take the corresponding values of "ing/lizimax
from the chart, noting that the smaller ratios apply to
the steeper side of the resonance curve. Detune the line
until the readings drop to the two given fractions of the
maximum. These are the positions of the sliding short
circuit that will give the correct value of the Q factor
in the formula Q=1/8] where 08/ is the distance between
the two positions of the short circuit and 7 is the full
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Fig. 6—Normalized value of the asymptote of the distorted resonance
curve (see Fig. 1) vs normalized ordinates on the resonance curve
which correspond to =+ Al in the case of fixed coupling between the
input and output loops.

length of the line. The position of the short circuit which
corresponds to the line at resonance will be the mean of
the two positions used in the Q-factor measurement.

I1I. CoNCLUSIONS

Two aspects of Q-factor measurements of transmis-
sion lines have been discussed which lead to corrections
to be applied to the familiar method of the “3 db-drop.”
1t has been shown that corrections are necessary in the
measurement of the Q factor of a “long” transmission
line having appreciable loss between its terminating
short circuits. It has been shown also that accurate Q
measurements may be made in the presence of fixed
coupling between the driving and pickup probes.

The corrections to be used are given as relative ampli-
tudes normalized to the maximum of the “resonance”
curve, which correspond to the true values of +16/ or
+346f in the Q-factor formula Q=f/6f or Q=1/8l.

APPENDIX

A. Definition of Resonance

In the case of a transmission line short-circuited at
both ends with both the driving and pickup probes at
the same end, resonated by variation of the line length,
the maximum current in the pickup probe will occur
when the absolute value of the input impedance reaches
a minimum. For that line

+/(sinh? 2al + sin® 230)
cosh 2l + cos 281

| Zu| = | %]
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let
Bl = n(r + 8)

where # is the integral number of half wavelengths in
the line and & is a small quantity to be evaluated. In
that case 28] = 2u(w + 8) and 2al = 2an(r + 8)/83
=n(r+8)/0Q.

| Zin| = [ 2]

Somlo: Measuremeni of Q of Transmission Lines

477

Taking such a case as the extreme and specifying the Q,
or 0,>100 (while Q, or Q;= =, respectively)

1 B
— — — 1 < 0.000025.

0 2«

This shows that the approximation 8/(2a) =0 is suffi-
ciently accurate.

10

j nw né nw : . ;
smh ~— cosh 6 -+ cosh 6 sinh 6:' + [sin 2n7 cos 218 + cos 2nw sin 2;16J2}

i 6 nw

cosh — cosh — + sinh — smh - + o8 2nmw cos 216 — sin 2nw sin 216

assuming that 61 and #/Q<«1 and taking only the
first-order terms into account

| Zia| ~ | 7] %4/< 52+55+QZ>

| Zin
B

I Zin

when

min

..77'
= 0= 8 + é;
from which § =~ —x/(4Q?% and therefore

1
Bl = n(r+98) =~ nr <1 4QZ>
As this paper deals with transmission lines having Q
factors of the order of hundreds or higher, the state-
ment that at resonance 3/ =#nw is justified.
It can be shown that the result obtained here is in
agreement with that obtained when the two probes are
situated at opposite ends of the line.

B. dccuracy of B/(20) = Q for the General Transmission
Line

Defining Q,=wL/R and Q,=wC/G it can be shown
that the over-all Q factor of the line will be

0.0
Qs -+ O»
On the other hand, using the definition of y=a+j8

=~/ [(R+jwL)(G-+jwC)] it can be shown, by a calcula-
tion too lengthy for inclusion in this paper, that

8 _ 00 [1 (Qs—Qp)2_(Qe2—Qp2)2+.__]'
2o Q0L 4020 (4020,

The series in the brackets indicates that 8/(2«) does not
give the precise value of the over-all Q factor except in
the special case when Q,=Q, (distortion-less line). The
largest divergence occurs if there is only one kind of loss

0=

when the series takes the form
- 1 1
40 1604

(see Appendix-B)

C. Measurement of the Q Faclor by Frequency Variation

It will be shown that by assuming that B wvaries
linearly with frequency (8=2nf/v) for Iqi] Q/| i|max pre-
cisely the same relationship applies as established for
the “line length variation method” irrespective of the
form of variation of « with {frequency.

The relationships to be used are

B =2nf/v; L=v/Q2f0) =N2; 1=nunl; a=Ek({)
a = /(2a) = xf/[vk())] = fo/8f = 1/Af

Ja =foF 3 = foll F 34f) = fu(1 F 1/Q2Q)

v =nr/(20); v =1 F1/20)]

When the input and output probes are at the same
end, it was shown that

1 Vll cos 2Bln -+ cosh 2alon
| Zy| +/(sin® 28l + cosh? 2adyn)

lid] =

2[027Tf

e

2042
l ng /‘/l:smz —0—~ 5 + sinh? ZZUnk(f)}

The value of |11[ i f=fqis

cos n + cosh 2lgmk(f)

Al
l - ’ cos — fo -+ cosh 2nlok(fo)
1

| ZOl 1/ [sin~ Ao fo -+ sinh? ZIZZUk(fQ>:I

il =

since
druly (1 1 >:| 2wl n v nw
_ F___)l=cos___ _ __ ___ = COS__
COS[ v Jo 20 v  Q 2 Q
= cos 2%
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and
Arnly 1 nr .
Sin[ 0< +—>:|: F sin— = F sin 2x
v 20
and
Dok o) 2wle nf(l— 1> 7;7r<1_ 1) )
e == g T ag) T o\ ) TP
]Vll cos 2x + cosh 2y

] =

l Zol 4/(sin? 2x 4 sinh? 2y)
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which is the same function as was obtained from the
“line length variation method.” Similarly, it can be
shown that when the two probes are at opposite ends
the result is identical, irrespective of whether the line
length or the frequency has been changed to obtain the
value of the Q factor.

The reason for this is that |i|g/‘1’]max =f(x) where
x=nw/(20Q) (nepers) which means that the correction
to be used in the Q-factor measurement is a function of
the total attenuation only, and therefore the same result
will be obtained by either method of measurement.

A Nonuniform Coaxial Line with an Isoperimetric
Sheath Deformation®

N. SESHAGIRIf

Summary—For impedance matching in transmission lines, non-
uniform lines, obeying laws of taper like the exponential, the Dolph-
Chebyshev etc., are used. For the nonuniform coaxial line, construc-
tional advantages can be derived for the same electrical performance
if it has a uniform circular inner conductor with an outer conductor
having an isoperimetric transition, from circular to elliptic cross
section, in conformity with the established laws of taper. This prob-
lem has been examined in the paper, and the required design for-
mulas as well as the design charts are developed. The effect of an
impedance and geometric discontinuity at the low-impedance junc-
tion of such a nonuniform line and the concentric circular uniform
line is discussed. The use of the isoperimetric transition line in
microwave components is indicated.

I. INnTRODUCTION
i§§ COMMON PROBLEM of systems design is im-

pedance matching. In coaxial transmission lines,

this presents difficulties associated with electri-
cal and mechanical design considerations. A solution to
the mechanical aspect of the problem has been attempted
by the use of nonuniform transmission lines, with a
variation of the diameter of either the inner or the outer
conductor satisfying the electrical requirements. The
latter approach is suggestive of an alternative method
wherein the outer conductor transforms isoperimetri-
cally from a circular cross section to an elliptic cross
section, the inner conductor being uniformly circular.
Mechanical advantages can be derived for the same elec-
trical performance if the increase of ellipticity is related
to the existing laws of transition. The proposed structure

* Received March 11, 1963; revised manuscript received July 23,
1963.

1 Department of Electrical Communication Engineering, Indian
Tnstitute of Science, Bangalore, India.

permits easy and continuous installation of any law of
taper. Thus, for instance, the difficulty encountered to
install the exponential law® or the Orlov's law? of taper
is not appreciably more than that for a linear taper. The
design can also be used for tapered terminations at
microwaves,® and in the design of microwave com-
ponents where work on the use of nonuniform lines has
been reported.**

To develop the required design formulas it is first
necessary to carry out the field analysis of infinitely
long uniform lines with a circular cylindrical inner con-
ductor surrounded by an elliptic outer conductor. Morse
and FeshbachS® give an expression for the case of an inner
conductor in the form of a thin wire. A similar analysis
can also be made using a Schwarz’s transformation.”
The requirement of the design considered in this paper
being that of an inner conductor whose radius is com-
parable to the dimensions of the ellipse, a different

1 C. R. Burrows, “The exponential transmission line,” Bell Sys.
Tech. J., vol. 17, pp. 555-573; October, 1938.

2 S. 1. Orlov, “Concerning the theory of non-uniform transmission
lines,” J. Tech. Phys. USSR, vol. 26, pp. 2361-2372; October, 1956.
(Translated by APS, vol. 1, pp. 2284-2294; October, 1957.)

3G, T. Clemens, “A tapered line termination at microwaves,”
Quart. J. Appl. Math., vol. 7, pp. 425-432; January, 1950.

¢ C. P. Womack, “The use of exponential transmission lines in
microwave components,” IRE TRANS. ON MICROWAVE THEORY AND
TecaNIQUES, vol. MTT-10, pp. 124-132; March, 1962.

5 R. N. Ghose, “Exponential transmission lines as resonators and
transformers,” IRE TraNs. oN MICROWAVE THEORY AND TECH-
NIQUES, vol. MTT-5, pp. 213-217; July, 1957.

5 P. M. Morse and H. Feshbach, “Methods of Theoretical Phys-
ics,” McGraw-Hill Book Co., Inc., New York, N. Y., p. 1203; 1953,

"H. A. Schwarz, “Notizia sulla rappresentazione conforme di
un'area ellittica sopra un’area circolare,” Annali di Matematica (II),
vol. 3, pp. 166-173; 1869.



